Impact of AMOC shutdown on Australian precipitation

UNSW Climate Change **Research Centre**

^{1,2}Himadri Saini, ^{1,2}Laurie Menviel, ^{1,2}Gabriel Pontes

¹Climate Change Research Centre, UNSW, Sydney, Australia

²Australian Centre for Excellence in Antarctic Science, UTAS, Hobart, Tasmania, Australia

- The strength of the Atlantic meridional overturning circulation (AMOC) varied significantly during the last glacial period¹. Particularly, the AMOC could have been shutdown during Heinrich events as a result of iceberg discharges into the North Atlantic Ocean².
- The AMOC will weaken over the coming century^{3,4}.
- The impact of an AMOC shutdown on Australian precipitation is unclear. Here we assess the impact of an AMOC shutdown

Experimental design

- Model used: ACCESS_ESM1.5
- Boundary conditions: Orbital parameters and GHGs corresponding to pre-industrial (PI) and last interglacial (LIG).
- Freshwater experiments: 0.4 Sv of freshwater added into the North Atlantic under LIG and PI boundary conditions (LIG-FW,

under pre-industrial and last interglacial boundary conditions.

Climatic impact of an AMOC shutdown

• Air temperature, SST and MSLP anomalies

- PI-FW)
- AMOC collapse is referred to the point when AMOC strength is <5 Sv in both LIG-FW and PI-FW
- Australian precipitation response to AMOC shutdown

LIG-FW – lig-control

Intensification of northern Hadley Cell \bullet

Southward shift of the ITCZ

References:

PI-FW – pi-control

LIG-FW – lig-control

Annual Precip

AMOC shutdown leads to intensified DJF precipitation, lacksquareparticularly over Northern Australia. This could be due to the southward shift of the subtropical ridge over the Indian Ocean.

DJF MSLP anomalies

Different response under LIG and PI boundary conditions, due to northward ITCZ position at the LIG.

Work under progress

AMOC shutdown under a glacial climate

Boundary conditions Experiments 49ka-ic GHGs, Orbital parameters 49ka-ice 49ka-ic + ice sheet mask + vegetation 49ka-XXX 49ka-ice + ice sheet orography 49ka-YYY 49ka-XXX + FW

- 1. Rahmstorf, S., 2002. Ocean circulation and climate during the past 120,000 years. Nature, 419(6903), pp.207-214.
- 2. Menviel, L.C., Skinner, L.C., Tarasov, L. and Tzedakis, P.C., 2020. An ice-climate oscillatory framework for Dansgaard-Oeschger cycles. Nature Reviews Earth & Environment, 1(12), pp.677-693.

180°

3. Caesar, L., McCarthy, G.D., Thornalley, D.J.R., Cahill, N. and Rahmstorf, S., 2021. Current Atlantic meridional overturning circulation weakest in last millennium. Nature Geoscience, 14(3), pp.118-120

120°W

60°W

4. Ditlevsen, P. and Ditlevsen, S., 2023. Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nature Communications, 14(1), p.4254.

120°E