Southern Ocean freshwater initiative

Ariaan Purich, Matt England, Wilma Huneke and many contributors

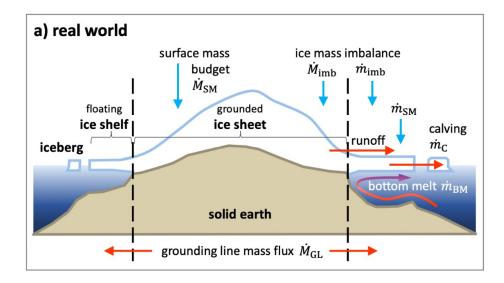
LETTERS PUBLISHED ONLINE: 31 MARCH 2013 | DOI: 10.1038/NGE01763

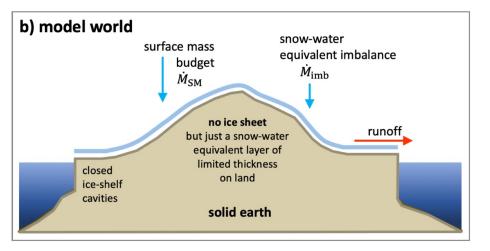
Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion

R. Bintanja*, G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters and C. A. Katsman

"Here we show that accelerated basal melting of Antarctic ice shelves is likely to have contributed significantly to sea-ice expansion"

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 4328-4332, doi:10.1002/grl.50820, 2013

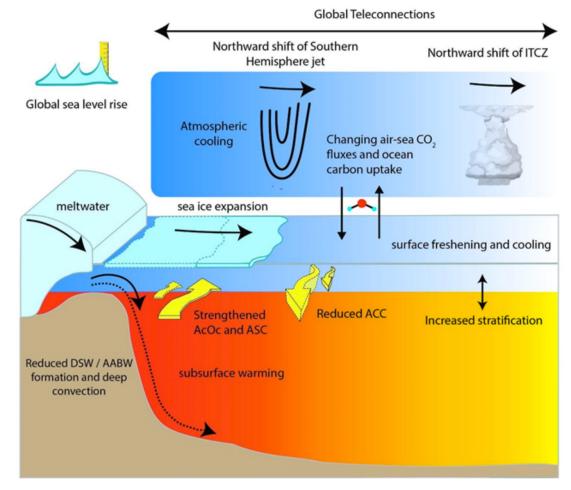

The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends N. C. Swart¹ and J. C. Fyfe²


"Our simulations show that the **freshwater effect on sea ice** trends over the historical period **is small** and fails to reproduce the observed regional pattern of trends"

We propose a standardised Southern Ocean freshwater forcing protocol to quantify the impact of missing Antarctic meltwater on climate simulations across multiple models

Photo: Richard Jones

Coupled climate models do not represent ice sheets or shelves, neglecting important climate impacts


- In control and historical simulations, runoff entering Southern Ocean is close to estimated ice shelf loss
- In future warming simulations, meltwater amounts entering Southern Ocean are underestimated

P–E over Antarctica in CMIP models is essentially equal to runoff to the Southern Ocean (Pauling et al. 2016)

Swart et al. 2023

Meltwater influences on climate

- High meltwater simulations produce anomalous surface cooling, reduced sea ice loss, hemispheric differences in precipitation, and ocean warming at depth
- Low meltwater simulations show the magnitude of climate responses are strongly dependent on applied meltwater amount (Purich and England 2023)

Swart et al. 2023

Meltwater studies

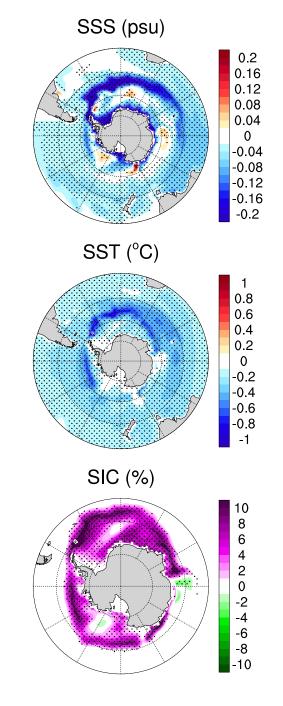
- Studies examining the role of Southern Ocean surface freshening in contributing to climate trends reached conflicting conclusions due to different experimental designs and models used
- A standardised meltwater intercomparison is needed to better understand the global climate response to Antarctic meltwater additions

Study	Model	Function	Depth	Max input	Max input
			m	$ imes 10^3 { m ~Gt~yr^{-1}}$	Sv
Hansen et al. (2016)	С	Е	S	9.46 to 255.47	0.30 to 8.10*
Sadai et al. (2020)	С	v	S	25.23, 78.85	0.80, 2.50*
Ma et al. (2013)	С	С	S	31.54	1.00*
Stouffer et al. (2007)	С	С	S	31.54	1.00*
Bronselaer et al. (2018)	С	v	S	18.92	0.60*
Mackie et al. (2020)	С	Е	R	17.71*	0.56
Purich and England (2023)	С	L	S	4.81 to 16.65	0.15 to 0.53
Golledge et al. (2019)	С	v	S	5.05*	0.16
van den Berk and Drijfhout (2014)	С	Е	S	5.05*	0.16
Li et al. (2023b)	С	С	U	0.50, 2.0, 5.0*	0.02, 0.06, 0.16
Fogwill et al. (2015)	С	С	S	2.18 to 6.59	0.07 to 0.21*
Pauling et al. (2017)	С	L	R	4.10*	0.13
Beadling et al. (2022)	С	С	S	3.15	0.10*
Bronselaer et al. (2020)	С	С	S	3.15	0.10*
Park and Latif (2019)	С	С	S	1.58, 3.15	0.05, 0.10*
Rye et al. (2020)	С	v	U	0.74*	0.02
Bintanja et al. (2013)	С	С	S	0.25*	0.01
Pauling et al. (2016)	С	С	R	0.17 to 3.00*	0.01 to 0.10
Bintanja et al. (2015)	С	С	S	0.01 to 0.12*	< 0.01
Swingedouw et al. (2009)	I	С	S	3.15 to 63.08	0.1 to 2.00*
Weaver et al. (2003)	I	L	S	6.31	0.20*
Aiken and England (2008)	I	С	S	0.13, 12.62	<0.01, 0.40*
Menviel et al. (2010)	I	C, L	S	5.68, 11.04	0.18, 0.35*
Swart and Fyfe (2013)	Ι	L	S	0.09 to 0.95	<0.01 to 0.03*
Lago and England (2019)	0	Е	S	3.15	1.00
Moorman et al. (2020)	0	С	S	1.32, 5.05	0.04, 0.16*
Li et al. (2023a)	0	L	S	2.52	0.08*
Merino et al. (2018)	0	С	R	0.28*	< 0.01
Seidov et al. (2001)	0	С	S	0.38 to 1.89	0.01 to 0.06*
Haumann et al. (2020)	0	С	U	0.84	0.03*

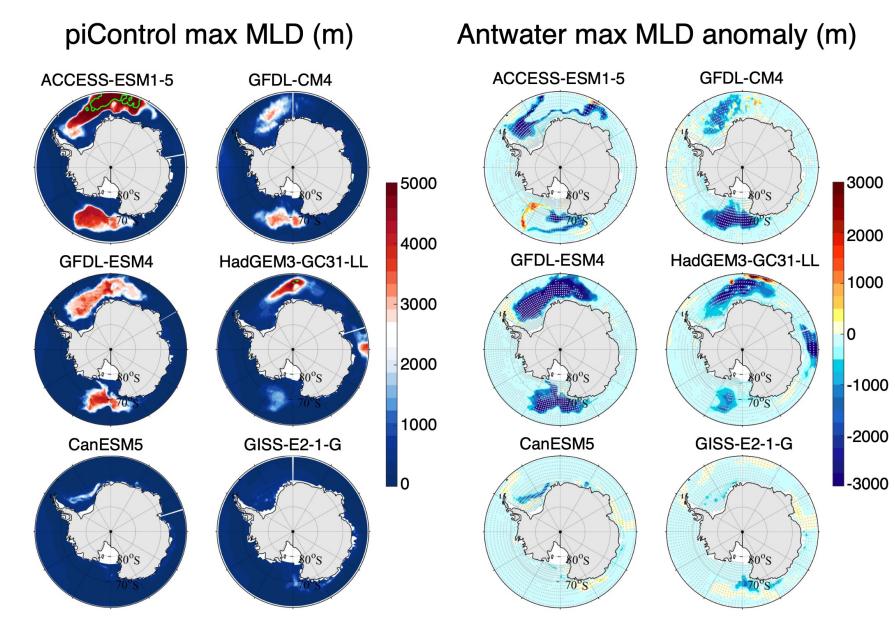
The Southern Ocean Freshwater release model experiments Initiative (SOFIA)

- We propose a standardised Southern Ocean freshwater forcing protocol to quantify the impact of missing Antarctic meltwater on climate simulations across multiple models
- Swart et al. 2023, submitted to GMD
- SOFIA will address gaps in our understanding of:
 - Climate response to Antarctic meltwater
 - Forcing uncertainty
 - Model uncertainty

Experimental protocol

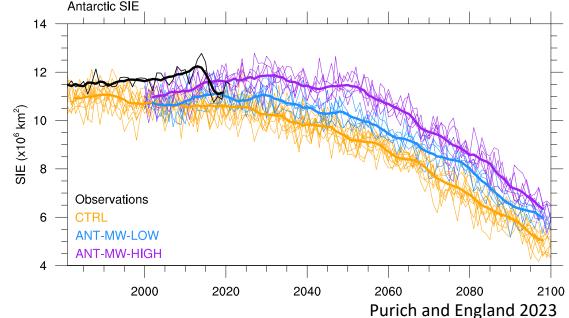

• We describe protocols for coupled models to maximise participation and to provide distinct pieces of information:

Tier 1	Experiment antwater	Freshwater forcing constant 0.1 Sv
2	• •	0.1, 0.3, 0.5, 1.1 x 10 ⁻³ Sv y ⁻¹ ramps ISMIP6 SSP126 basal melt ISMIP6 SSP585 basal melt
	60Swater antwater-lh nwater anomalie	constant 0.1 Sv south of 60°S constant 0.1 Sv with latent heat s are applied at the ocean surface in to the Antarctic coast


Tier 1 output

 Tier 1 output is available for eight coupled models, including ACCESS-ESM1.5, and ACCESS-CM2 runs are planned

Туре	Model	Resolution	Contact	Reference
		(ocn/atm, lat×lon, $^{\circ}$)		
Coupled	ACCESS-ESM1-5	1/1.875×1.25	Ariaan Purich	Ziehn et al. (2020)
	CanESM5	1/3	Neil Swart	Swart et al. (2019)
	FOCI	0.5/1.9	Torge Martin	Matthes et al. (2020)
	GFDL-CM4	0.25/1	Stephen Griffies	Held et al. (2019)
	GFDL-ESM4	0.50/1	Stephen Griffies	Dunne et al. (2020)
	GISS-E2-1-G	1×1.25/2×2.5	Qian Li	Kelley et al. (2020)
	HadGEM3-GC3.1-LL	1/1	Max Thomas	Kuhlbrodt et al. (2018)
	NorESM2-MM	1/1	Tore Hattermann	Seland et al. (2020)
Ocean	MOM5	1	Riccardo Farneti	Griffies (2012)


Swart et al. 2023

Figures from Jia-Jia Chen

SOFIA goals

- Encourage participation of a wide and diverse group of models
- Analysis papers: general climate response to freshwater forcing, effect on deep convection and bottom water formation, and circulation
- Detection and attribution of climate changes to freshwater forcing, such as for Antarctic sea ice
- Provide information on the relative importance of including ice-ocean interactions in future generations of coupled climate models

SOFIA preprint

- Swart et al. 2023, The Southern Ocean Freshwater release model experiments Initiative (SOFIA): Scientific objectives and experimental design
- <u>https://egusphere.copernicus.org/preprints/2023/egusphere-2023-198/</u>