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Parameterized “physics” a weak point of global models

Governing equations

Forcing conditions

Initial conditions

Model output



Model physics

Need to predict sources and sinks of prognostic 
variables x = {T, q, …} using predictors x’, i.e.,
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Model physics acts as a (stochastic) operator to 
map predictors xij’ onto !𝗑!"
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xij’ ≡ {xij, others diagnosed from x}

Model horizontal grid spacing
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Why have model physics representations 
developed so slowly?

1. Phenomena are too complex for straightforward 
representation — we need to simplify substantially 
but don’t know how

2. Scheme development+implementation is laborious

3. Offline evaluation hampered by lack of data

4. Online evaluation corrupted by other model errors
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DYAMOND
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So let’s just resolve convection 😃 

100 m 1 km 100 km

Three days One year 10-member ensemble 
of a glacial cycle

😳



How can we test in more realistic and 
diverse situations?

🤖

Let me 
help you

• Data for training the Machine Learning (ML)?

• How to put the ML into the (FORTRAN) GCM?

• How to rapidly test alternate ML models?
Hybrid Climate Model

Neural Network physics 
surrogate (or emulator)

Wang et al. 2022
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Offline AI surrogate performance
(Total Precipitation)

SPCAM Sim SPCAM NN
Precipitation
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AI training in modern 
ML frameworks

Parametrized 
Physics Models

Cloud Physics AI 
Surrogate 

    Fortran Binding

Gaia Hybrid Model Integration
TorchClim Bridge Module

Global Climate Model GAIA Hybrid AI Model

Grid Cell

C++ ML engine

Serialized AI weights 
& network

Surface Fluxes

Radiation
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Large scale 
dataset of grid 
cell variables

offline

GAIA hybrid physics model 
integration bridge will enable 
new AI-based climate science 
research and developments
• Flexible integration of AI surrogates 

compatible with common ML frameworks 
w/o custom compilation

• Enables fast research and development 
of AI surrogates for the entire climate 
science community

• Highly customizable: configure AI 
surrogates to replace different physics 
parameterizations

• Same speed as standard model, faster 
with future optimization

• Validated integration with widely-used 
CSEM codebase & GCMs parallelization 
architectures

online

…
.

Temperature

Humidity

Precipitation

…
.

Enabled Disabled

Fuchs et al., Geosci. Mod. Development
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Gaia Hybrid Model Integration
Comparison with original physics

∂T/∂t

∂q/∂t
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Gaia Hybrid Model Integration
Applications

• If system were used in multiple GCMs: 
easily swap (emulated) physics 
between models

• Emulate selected individual processes

• Evaluate new schemes or versions 
rapidly via an emulator—avoid 
integration costs

• Emulate LES models or observations
(but usually don’t have enough data!?)
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Pre-training to use limited data

1.Pre-train the deepNN on data from CAM (107 data points)

2.Fine-tune this deepNN with small sample from SPCAM (101-107 data points)

3.How well can this fine-tuned NN emulate SPCAM?

Precipitation Temperature tendency Humidity tendency

SPCAM SPCAM SPCAM

Pre-training on poor data reduces the amount of good data needed by 1-2 orders of magnitude

LES can generate training 
sample, e.g.

Yu et al. 2023 (arXiv)



What can this be used for

• Speed up models by emulating expensive physics / resolution

• Learn processes from “quality” data (model/observations)

• Add new predictands online (e.g., downscaling, impacts)

• Accelerate traditional model development



Accelerating Model Development 🤖

• Combine concepts of 
“interpretable” and “physics-
informed” machine learning

• Trial an error process on 
different structural 
assumptions/models

• Use ML to overcome the 
“scheme interaction” 
problem



Take home messages

• GCRMs will not do everything (in my lifetime anyway) and there is room 
to improve current atmospheric model parameterizations

• We have a new system for CAM ML that could be implemented into other 
models 

• Machine learning offers a host of opportunities for achieving the holy grail 
of combining information across scales (LES/CRM, GCM, observations), 
through fine-tuning/transfer learning approaches, transpose models.

• It could be harnessed to aid, not replace, human learning.
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1954/



From  Alphacoders

Thank you
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AI Surrogate Inputs and Outputs

Inputs

• Specific Humidity (Q)
• Temperature (T)
• Zonal Wind (U)
• Meridional Wind (V)
• Vertical Velocity (OMEGA)
• Geopotential Height (Z3)
• Surface Pressure (PS)
• Solar Insolation (SOLIN)
• Sensible Heat Flux (SHFLX)
• Latent Heat Flux (LHFLX)
• Land Fraction (LANDFRAC)
• Ocean Fraction (OCNFRAC)
• Ice Fraction (ICEFRAC)
• Surface Temperature (TS)

Outputs

• Q Total Physics Tendency (PTEQ)
• T Total Physics Tendency (PTTEND)
• Net Solar Flux at Surface (FSNS) 
Net Longwave Flux at Surface (FLNS) 
Net Solar Flux at top of model (FSNT )
Net Longwave  Flux at top of model (FLNT)
Downwelling Solar Flux at Surface (FSDS)
Downwelling Longwave Flux at Surface (FLDS)
Net Radiative Flux at Surface (SRFRAD) 
Solar Downward Near Infrared Direct  to Surface 
(SOLL)
Solar Downward Visible Direct  to Surface (SOLS)
Solar Downward Near Infrared Diffuse to Surface 
(SOLLD)
Solar Downward Visible Diffuse to surface (SOLSD) 
Total (Convective and Large-Scale) Precipitation Rate 
(liq + ice) (PRECT) 
Convective Precipitation Rate (liq + ice) (PRECC)
Large-Scale (Stable) Precipitation Rate (liq + ice) 
(PRECL) 
Convective Snow Rate (PRECSC) 
Large-Scale (Stable) Snow Rate (PRECSL)
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Additional AI evaluations & updates 
Gradient map: no regularization

Unregularized model 
produces noisy gradients for 
some input/output pairs

d(high altitude Q tendencies)/
d(T, Q)

d(low altitude Q tendencies)/
d(elevation)

d(low altitude T tendencies)/
d(elevation)


