We're ramping up our visualisation capability...

Visualisation services and tools for ACCESS models

Owen Kaluza owen.kaluza@anu.edu.au or @OwKal on ACCESS Hive

- In house visualisation specialist in the Model Evaluation and Diagnostics (MED) team.
- Complemented by domain specific and general visualisation expertise throughout the ACCESS community and NCI Vizlab
- MED software projects improving visualisation tools for ACCESS-NRI models

Initial goals

- Collect a library of tools and techniques visualisation recipes
- Produce some showcase visualisation examples

Soon...

Provide specialist advanced visualisation services
(3D modelling/4D animations, cinematic visualisation)
Improve visualisation tools and develop new ones

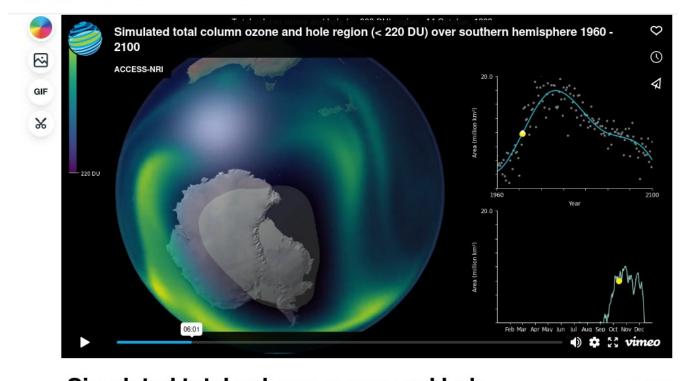
Advanced visualisation?

Illustrate aspects of the data that are difficult to translate to 2D and use our brain's capability to explore/analyse in 3D environments while increasing accessibility and impact to the wider public

- Interactivity (3D, adjusting parameters)
- Time varying : Animations (4D)
- Complex 3D models, fly throughs, higher dimensional data
- Advanced lighting, and rendering, volume rendering, ray tracing
- VR and other specialist vis hardware
- Cinematic Scientific Visualisation

Cinematic scientific visualisation?

Taking visualisation to the next level


Media quality visual output, using filmmaking techniques and tools
(cinematography, lighting, and composition) and visual effects
software such as Blender and Houdini

Watch this space...

Check out our Vimeo channel for visualisation projects as we release them...

https://vimeo.com/accessnri

Simulated total column ozone and hole region (< 220 DU) over southern hemisphere 1960 - 2100

Total column ozone was simulated using the ACCESS-CM2-Chem[1] model as part of the Chemistry-Climate Model Initiative 2022 intercomparison project[2]. Data from this model run is available via the Centre for Environmental Data Analysis (CEDA) repository[3].

https://www.publish.csiro.au/ES/ES22015
 https://blogs.reading.ac.uk/ccmi/ccmi-2022/
 https://data.ceda.ac.uk/badc/ccmi/data/post-cmip6/ccmi-2022/CSIRO/ACCESS-CM2-

Projects in the works

- Ozone layer recovery 3D vis of Ozone simulation 1960 2100
- Sea ice Recreating animations of sea ice in 4D
- Aus400 Tackling a high res model with advanced visualisation techniques
- Circulation of the Southern Ocean Exploring ocean currents

Image credits

1. NASA/Goddard Space Flight Center Scientific Visualization Studio.

The Blue Marble data is courtesy of Reto Stockli (NASA/GSFC)

2. NASA SVS Perpetual Ocean https://svs.gsfc.nasa.gov/3827

All others (c) ACCESS-NRI, Owen Kaluza 2023

Earth Model

Data sources:

Blue marble: https://www.h-schmidt.net/map/download/world_shaded_43k.jpg

https://eoimages.gsfc.nasa.gov/images/imagerecords/73000/73934/gebco_08_rev_elev_21600x10800.png

DEM topography:

import accessvis, lavavu
import numpy as np

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from PIL import Image
Image.MAX_IMAGE_PIXELS = 1061683200

import math, os

[2]: #Earth's radius ~6371km - we'll use 1000's of km units (Maradius = 6371 * 1e-3 #Radius in Mm

[3]: height = data = np.array(Image.open('gebco_08_rev_elev_21600x10800.png'))
print(height.shape, height.min(), height.max(), height.dtype)

(10800, 21600) 0 255 uint8

height = height.reshape(height.shape[0],height.shape[1],1)
image = lavavu.Image(data=height[::50, ::50])
image.display()

height = height / 255.0 / 10. print(height.shape, height.min(), height.max())

n [6]: #Split the topography equirectangular image into cube map
GRIDRES = 2048 #For testing or older GPU / less any ram

In [7]: #Split the colour equirectangular image into cube map tiles
fn = '3_no_ice_clouds_16k.jpg' #Shaded relief
col = np.array(Image.open(fn))
#Renders a downsampled view
image = lavavu.Image(data=col[::50, ::50])

#Export individial textures
if not os.path.exists('F.png'):
 #Resolution of the colour texture - defines the colour detail
 TEXRES = 4096
 textures = accessvis.split_tex(col, TEXRES)
 #Write colour texture tiles

display images
%matplotlib inline
fig, ax = plt.subplots(1,6) #, figsize=(12, 2))
for i,f in enumerate(['F', 'R', 'B', 'L', 'U', 'D']):
 ax[i].imshow(mpimq.imread(f + '.pnq'))

tex = lavavu.Image(data=textures[f])

3D globe

ij = np.linspace(-1., 1., GRIDRES, dtype='float32')
ii, jj = np.meshgrid(ij, ij) #2d grid
zz = np.zeros(shape=ii.shape, dtype='float32') #3rd of
for f in ['F', 'R', 'B', 'L', 'U', 'D']:
 #Generate cube face grid
 if f == 'F':
 vertices = np.dstack((ii, jj, zz + 1.0))
 elif f == 'B':

vertices = np.dstack((zz - 1.0, jj, ii))
elif f == 'U':
 vertices = np.dstack((ii, zz + 1.0, jj))
elif f == 'D':
 vertices = np.dstack((ii, zz - 1.0, jj))

#Normalise the Vectors to form spherical patch (normalised cube)
V = vertices.ravel().reshape((-1,3))
norms = np.sqrt(np.einsum('...i,...i', V, V))
norms = norms.reshape(GRIDRES,GRIDRES,1)
verts = vertices / norms
verts *= (heights[f] + radius) #Offset the heights and apply scaling
q = lv.quads(name=f, vertices=verts, texture=f + '.png',

lv["light"] = [1,1,0.98,1] #R,G,B colour, Setting final component disables two-sided l.
lv["contrast"] = 1.0

dist = 151850 #151.85 million km earth --> sun. in our units
c = [-1.25, 1.25, 1]
D = math.sqrt((dist*dist)/(c[0]*c[0] + c[1]*c[1] + c[2]*c[2]))

In [10]: lv.translation(0.0, 0.0, -17)
 lv.rotation(0.0, -125.0, 0.0)
lv.display((400, 400))

lv.rotation(0.0, -125.0, 0.0) lv.display((400,400))

Create Stratosphere mesh to plot ozone

[11]: #Using units of 1000 km (Mm) (diameter of earth: 6779 km)
s_radius = radius * 1.018 #Radius + small offset for stratosphere
lv.addstep(0) #Add a timestep or things don't work on load
tris0 = lv.spheres("strato", scaling=s_radius, segments=64, colour="grey", vertices=[0,0,0])
tris0['rotate'] = [0,-90,0] #This rotates the sphere to align with out [0,360] longitude tex
tris0.texture('toz.png') #Need an initial texture or texcoords will not be generated
lv.render()
#Generate sphere vertices, texcoords etc
lv.bake(7)
lv['cullface'] = False #Must disable this for the ozone plot
tris0["rotate"] = [0,0,0]
tris0["alpha"] = 0.6

0 Converting LINES 0 TRIS 1 PTS Converting LINES 0 TRIS 0 PTS 0

