# "ACCESS-OM2-01 with biogeochemistry

## captures the impacts of the recent

# Antarctic sea ice minima on the decline of

# primary production by sea ice algae."

### Interannual variability of primary production by algae in Antarctic sea ice during the satellite era

**Pat Wongpan<sup>1</sup>**, Klaus Meiners<sup>2,1,3</sup>, Hakase Hayashida<sup>4,5</sup>, Andrew Kiss<sup>6,7</sup>, Matt Pinkerton<sup>8</sup>, Alex Hayward<sup>9,8</sup>, Anton Steketee<sup>2,1</sup>, Pete Strutton<sup>5,3,10</sup>, and Delphine Lannuzel<sup>1,3,5</sup>

<sup>1</sup>Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia

<sup>2</sup>Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, Australia

<sup>3</sup>Australian Research Council Centre of Excellence for Climate Extremes (ACEAS), University of Tasmania, Hobart, TAS, Australia

<sup>4</sup>Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

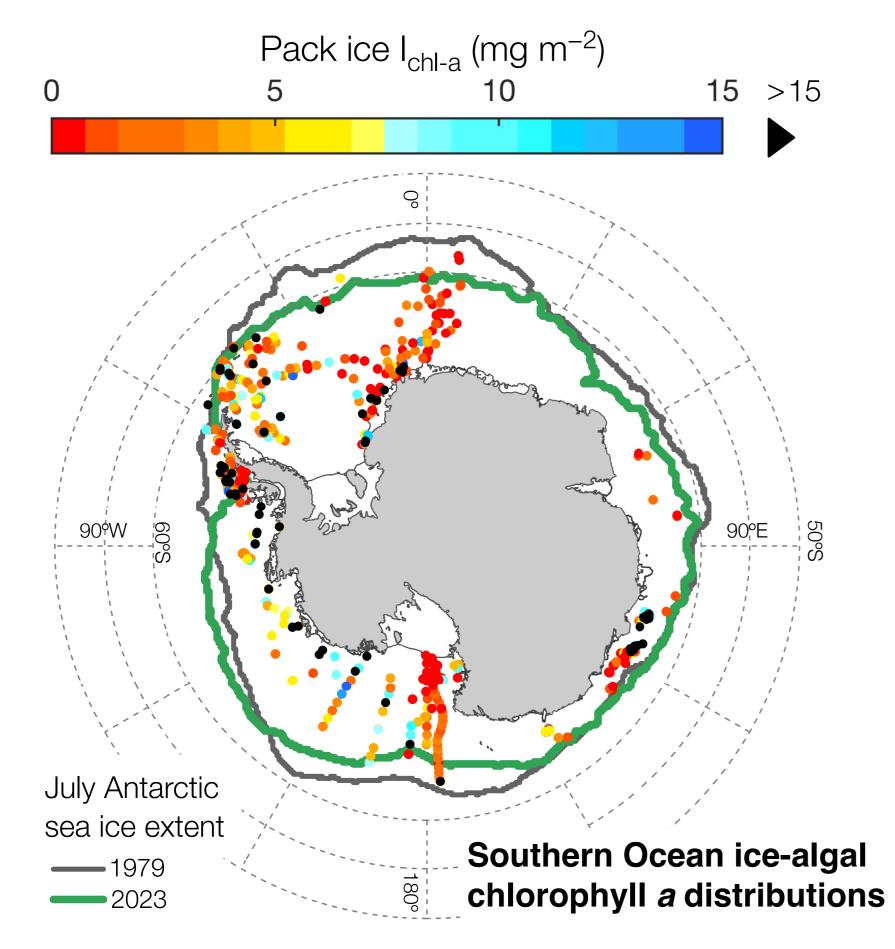
<sup>5</sup>Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia

<sup>6</sup>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia

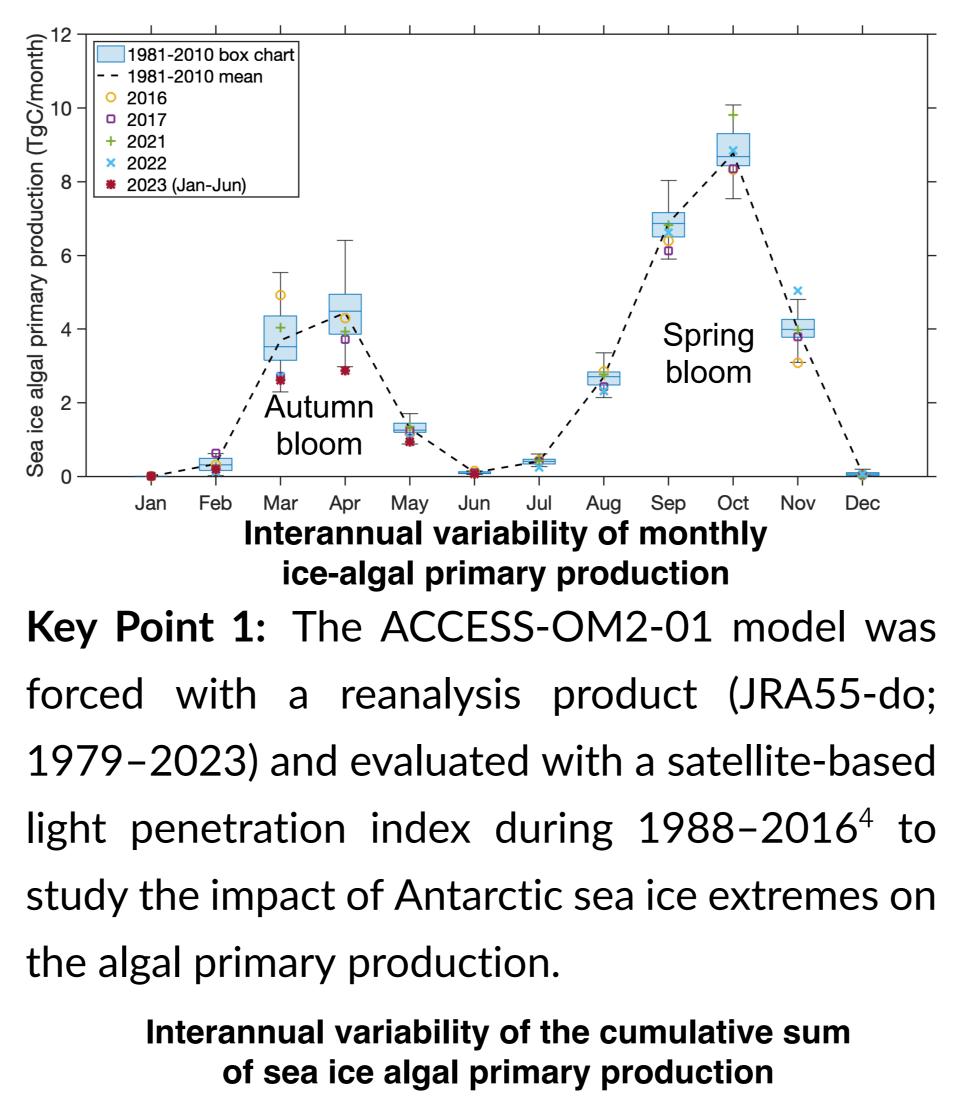
<sup>7</sup>Australian Research Council Centre of Excellence for Climate Extremes, Sydney, NSW, Australia

<sup>8</sup>National Institute of Water and Atmospheric Research Ltd (NIWA), Wellington, New Zealand

<sup>9</sup>Department of Marine Science, University Of Otago, Dunedin, New Zealand


<sup>10</sup>Australian Research Council Centre of Excellence for Climate Extremes (CLEX), University of Tasmania, Hobart, TAS, Australia

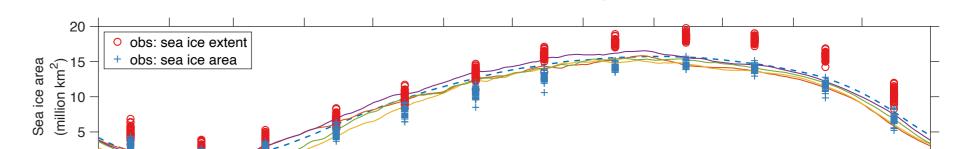
(TgC/y)


**⊆** 30

Observations of primary production by algae in algae in **Key Point 2:** There is a significantly positive 1981-2010 box chart 1981-2010 mean correlation between simulated ACCESS-OM2-BGC 2017 2022 and satellite-derived primary productions.

Antarctic sea ice are discontinuous, sparse, and under-described.




We use a high-resolution  $(0.1^\circ)$  ice-ocean-biogeo-



 Pinkerton and Havward (20) Pearson's correlation coeff = 0.52 (p = 0.004 $\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A}}\mathcal{A}}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}^{\mathcal{A$ Evaluation of 1986-2016 ice-algal primary production **Key Point 3:** The model captures the impacts of the recent increase of Antarctic sea ice variability on the changes of sea ice algal primary

#### production.

Impact of sea ice extremes on ice-algal primary production



Ice chemistry model of the Australian Community <u>7</u>25 mean 1987-20 Algae Climate and Earth System Simulator - Ocean Lg C V 2021 2022 Model version 2 (ACCESS-OM2-01)<sup>1</sup>. The biogeochemical model is composed of the Whole Ocean Model of Biogeochemistry and 2023 Trophic-dynamics (WOMBAT<sup>2</sup>) and the CICE 5.1<sup>3</sup>. Nov Dec Mav Oct Apr Sep 3. Jeffery et al. (2016) 4. Pinkerton & Hayward (2021) References 1. Kiss et al. (2020) pat.wongpan@utas.edu.au



Scan QR code to access the summary of COSIMA's ACCESS-OM2-01 IAF Cycle 4 with biogeochemical outputs

Snow



Australian Antarctic **Program Partnership**