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Motivation: Diagnosing climate model biases is a hugely complicated task. 
Aim: Develop a mathematical, systematic approach to identify biases in the 
temporal behaviours of the climate modes, and then to attribute cause and 
effect of those biases including uncertainty estimation.

Southwest Pacific (Henley et al. 2015). As expected, the 
observed SAT regression pattern of the TPI has positive 
anomalies in the equatorial central and eastern Pacific and 
negative anomalies in the central and western regions of the 
extratropical Pacific (Fig. 6d). This is broadly similar to the 
traditional IPO pattern (e.g. Power et al. 1999) despite no 
low-pass filtering being applied when computing the TPI. 
There are also some positive SAT anomalies in remote 
regions, such as the western parts of the tropical Indian and 
Atlantic Oceans, parts of Africa and Australia, and South 
America. The IPO pattern resembles the ENSO pattern in  
Fig. 5a, which is not surprising given the tropical box of TPI 
includes most of the Niño-3 and Niño-4 regions. The simu-
lated IPO patterns are similar to the observed pattern, albeit 
with some differences. For example, the tropical part of the 
simulated IPO pattern is narrower, and the extratropical 
anomalies are weaker, in both models than in observations. 

4.2. Spectral characteristics 

The temporal behaviour of the above climate variability 
modes is also of interest. Many of these modes exhibit 
characteristic spectral signatures that are important for 

diagnosing climate model performance. In Fig. 7, we show 
the power spectra of the four indices and the coherence 
spectra between two pairs of those indices. The observed 
ENSO spectrum has a well-known broad peak at 3–7-year 
periods (Fig. 7a; black curve). The ensemble-mean spectra 
of the simulated Niño-3.4 indices (thick red and green 
curves) also show spectral peaks, but at different periods 
than in observations. In particular, the ACCESS-CM2 ENSO 
spectrum peaks at ~2.5-year period and the ACCESS- 
ESM1.5 spectrum peaks at 3-year period, which is closer 
to the observed spectral peak. The spectral peaks for ensem-
ble members (thin curves) are located around the peaks of 
the corresponding ensemble-mean indices. In general, the 
simulated spectral variances are larger than the observed 
values. However, there are significant spreads in the simu-
lated spectra, and these are comparable to those found in 
the corresponding piControl runs. By contrast, the observed 
IOD spectrum is nearly flat without a discernible spectral 
peak (Fig. 7b), although there is a hint of a peak near the 
5-year period (which may not be statistically significant). 
The ACCESS-CM2 simulated spectra also do not show any 
well-defined peaks and are reasonably close to the observed 
spectrum in magnitude. However, the ACCESS-ESM1.5 
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Fig. 7. Power and coherence spectra 
of leading interannual-to-interdecadal 
climate variability indices from observa-
tions (black curves) and ACCESS simu-
lations (red and green curves). Left 
column: power spectra of (a) the 
Niño-3.4 and (b) IOD indices and 
(c) coherence spectra of the Niño-3.4 
and IOD indices. Right column: as in the 
left column, but for NASSTI and TPI. 
The coloured thick curves indicate 
ensemble-mean spectra and the thin 
dashed curves indicate spectra from 
individual model simulations.    
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Evaluation of climate variability and change in ACCESS 
historical simulations for CMIP6 
Harun A. RashidA,* , Arnold SullivanA, Martin DixA , Daohua BiA, Chloe MackallahA , Tilo ZiehnA,  
Peter DobrohotoffA , Siobhan O’FarrellA, Ian N. HarmanB, Roger BodmanA and Simon MarslandA  

ABSTRACT 

We analyse and document the historical simulations performed by two versions of the Australian 
Community Climate and Earth System Simulator (ACCESS-CM2 and ACCESS-ESM1.5) for the 
Coupled Model Intercomparison Project Phase 6 (CMIP6). Three ensemble members from each 
model are used to compare the simulated seasonal-mean climate, climate variability and climate 
change with observations over the historical period. Where appropriate, we also compare the 
ACCESS model results with the results from 36 other CMIP6 models. We !nd that the 
simulations of the winter and summer mean climates (over the global domain) by the two 
ACCESS models are similar to or better than most of the other CMIP6 models for surface 
temperature, precipitation and surface speci!c humidity. For sea-level pressure, both ACCESS 
models perform worse than most other models. The spatial structures of the prominent climate 
variability modes (ENSO, IOD, IPO and AMO) also compare favourably with the corresponding 
observed structures. However, the results for the simulation of the models’ temporal variability 
are mixed. In particular, whereas ACCESS-ESM1.5 simulates ENSO events with ~3-year periods 
(that are closer to the observed periods of 3–7 years), the ACCESS-CM2 simulates ENSO events 
having quasi-biennial periods. However, ACCESS-CM2 has a much smaller bias (−0.1 W m−2) in 
present-day top-of-the-atmosphere energy balance than ACCESS-ESM1.5 (−0.6 W m−2). The 
ACCESS models simulate the anthropogenic climate change signal in historical global-mean 
surface temperature reasonably well, although the simulated signal variances are ~10% weaker 
than the observed signal variance (a common bias in most CMIP6 models). Both models also well 
simulate the major features of observed surface temperature changes, as isolated using a multiple 
regression model. Despite some identi!ed biases, the two ACCESS models provide high-quality 
climate simulations that may be used in further analyses of climate variability and change.  

Keywords: ACCESS-CM2, ACCESS-ESM1.5, aerosols, climate change, climate variability 
modes, CMIP6, coupled climate model, earth system model, evaluation, greenhouse gases, 
historical simulation. 

1. Introduction 

Understanding historical climate variability and change is important. Among other 
things, this provides insights into the nature of extreme events, such as droughts, floods 
and heat waves. Additionally, this gives us confidence in our ability to predict or project 
climate variations at multiple timescales, ranging from interannual through to century 
timescales. This understanding is facilitated by the availability of comprehensive obser-
vational and reanalysis datasets covering multiple decades, with some datasets going 
back more than a century. Climate models of varying complexities have also played an 
important role in uncovering the mechanisms of weather and climatic events. Global 
climate models (hereafter, GCMs) have been used for providing dynamical predictions 
for weather and seasonal–interannual climate variability. These models, combined with 
appropriate forcing datasets, are also predominantly used for providing climate 
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Southwest Pacific (Henley et al. 2015). As expected, the 
observed SAT regression pattern of the TPI has positive 
anomalies in the equatorial central and eastern Pacific and 
negative anomalies in the central and western regions of the 
extratropical Pacific (Fig. 6d). This is broadly similar to the 
traditional IPO pattern (e.g. Power et al. 1999) despite no 
low-pass filtering being applied when computing the TPI. 
There are also some positive SAT anomalies in remote 
regions, such as the western parts of the tropical Indian and 
Atlantic Oceans, parts of Africa and Australia, and South 
America. The IPO pattern resembles the ENSO pattern in  
Fig. 5a, which is not surprising given the tropical box of TPI 
includes most of the Niño-3 and Niño-4 regions. The simu-
lated IPO patterns are similar to the observed pattern, albeit 
with some differences. For example, the tropical part of the 
simulated IPO pattern is narrower, and the extratropical 
anomalies are weaker, in both models than in observations. 

4.2. Spectral characteristics 

The temporal behaviour of the above climate variability 
modes is also of interest. Many of these modes exhibit 
characteristic spectral signatures that are important for 

diagnosing climate model performance. In Fig. 7, we show 
the power spectra of the four indices and the coherence 
spectra between two pairs of those indices. The observed 
ENSO spectrum has a well-known broad peak at 3–7-year 
periods (Fig. 7a; black curve). The ensemble-mean spectra 
of the simulated Niño-3.4 indices (thick red and green 
curves) also show spectral peaks, but at different periods 
than in observations. In particular, the ACCESS-CM2 ENSO 
spectrum peaks at ~2.5-year period and the ACCESS- 
ESM1.5 spectrum peaks at 3-year period, which is closer 
to the observed spectral peak. The spectral peaks for ensem-
ble members (thin curves) are located around the peaks of 
the corresponding ensemble-mean indices. In general, the 
simulated spectral variances are larger than the observed 
values. However, there are significant spreads in the simu-
lated spectra, and these are comparable to those found in 
the corresponding piControl runs. By contrast, the observed 
IOD spectrum is nearly flat without a discernible spectral 
peak (Fig. 7b), although there is a hint of a peak near the 
5-year period (which may not be statistically significant). 
The ACCESS-CM2 simulated spectra also do not show any 
well-defined peaks and are reasonably close to the observed 
spectrum in magnitude. However, the ACCESS-ESM1.5 

30 1.5

1.0

0.5

0.0

20

10

0
0.0 0.00 0.05 0.10 0.15 0.20 0.25

HadSST
ACCESS-CM2
ACCESS-ESM1.5

0.300.2 0.4 0.6 0.8

(a) (d )

PS
D 

(°C
2  y

ea
r)

Nino3.4

6

4

2

0
0.0 0.2 0.4 0.6 0.8

(b)

PS
D 

(°C
2  y

ea
r)

IOD

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8

(c)

Co
hS

q

CohSq(Nino3.4,IOD)

Freq (cycles year–1) Freq (cycles year–1)

NASSTI

1.5

2.0

2.5

1.0

0.5

0.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30

(e) TPI

0.6

0.4

0.2

0.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30

(f ) CohSq(NASSTI,TPI)

Fig. 7. Power and coherence spectra 
of leading interannual-to-interdecadal 
climate variability indices from observa-
tions (black curves) and ACCESS simu-
lations (red and green curves). Left 
column: power spectra of (a) the 
Niño-3.4 and (b) IOD indices and 
(c) coherence spectra of the Niño-3.4 
and IOD indices. Right column: as in the 
left column, but for NASSTI and TPI. 
The coloured thick curves indicate 
ensemble-mean spectra and the thin 
dashed curves indicate spectra from 
individual model simulations.    
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HadISST; broad peak between 3-7 years
ACCESS-CM2: 2.5 years;
ACCESS-ESM1.5: 3 years



Approach: Using the methods of Bayesian inference for causal discovery to 
robustly identify biases in CMIP models in terms of their ability to 
reproduce the observed teleconnections between the major internal modes 
of variability

Method: model data within a framework of a structural causal model to 
1. Robust identification of probability (uncertainty) that a causal 

relationship exists between a given climate mode at the present time 
and any other set of time lagged climate indices i.e., posterior 
distribution

2. Robust identification of the strength of the Granger causal 
teleconnection i.e., lagged correlation in terms of the posterior mean

3. Compare structural causal models (RJMCMC/MC3) sampled from 
CMIP5 models to those from reanalyses 

OVERVIEW



Fitting a homogeneous DBN to an observed timeseries 𝐷 = 𝑥!, … , 𝑥" , where 𝑥"  denotes the values of 
random variables 𝑋" = 𝑋"!, … , 𝑋"# $  at time t, requires learning the structure of the graph and the 
values of the corresponding parameters 𝜃.

The two-step process is therefore:

1. The structure learning stage, the structure of the graph G is sought, independent of 
specific values of the parameters i.e., directly sampling the posterior 𝑃 𝐺 𝐷 .

• 𝑃(𝐺) is the estimate of the (prior) probability of the hypothesis before the data D is 
observed.

• 𝑃 𝐺 𝐷 is the probability of the hypothesis G given the observed evidence D.

2.    Apply a Bayesian score-based approach such that the graph G is estimated based on 
maximizing a suitable score function, in this case the marginal likelihood P(D|G)

• The marginal likelihood is the probability of generating the observed sample from a 
prior distribution (likelihood function that has been integrated over parameter space) 
i.e., P 𝐷|𝐺 = ∫𝑑𝜃𝑃 𝐷|𝐺, 𝜃 𝑃 𝜃|𝐺

• 𝑃 𝐷|𝐺, 𝜃 = ∏"%!
$ ∏&%!

# 𝑃 𝑋"&|𝑝𝑎' 𝑋"& , 𝜃& is the likelihood under the model.

• 𝑝𝑎' 𝑋"& = 𝑋&|𝐺 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑛𝑑 𝑒𝑑𝑔𝑒 𝑓𝑟𝑜𝑚 𝑋& 𝑡𝑜 𝑋(

• 𝑃 𝜃|𝐺 denotes a set of priors for the full set of node PDF parameters conditional on 
the structure of the graph.

• Rather than find a single optimal model we sample from the full posterior distribution of 
possible graphs P(G|D)

• G provides a graphical representation of the joint pdf 𝑃 𝑋!, … , 𝑋)

General approach
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several known errors (Kistler et al., 2001) and biases, particularly in data-sparse regions in the high latitudes 
and the Southern Hemisphere (SH) (see, e.g., Bromwich & Fogt, 2004; Bromwich et al., 2007; Greatbatch & 
Rong, 2006; Hertzog et al., 2006; Hines et al., 2000; Lindsay et al., 2014; G. J. Marshall, 2002; G. J. Marshall & 
Harangozo, 2000). For the purposes of our analysis, global fields of daily mean 500 hPa geopotential height 
(Zg(500 hPa)), zonal winds at 850 hPa and 200 hPa (u850 hPa and u200 hPa), mean sea level pressure (MSLP), and 
surface zonal and meridional winds (usfc and vsfc) are obtained on the provided 2.5° × 2.5° latitude-longitude 
grid. Daily mean top-of-atmosphere outgoing longwave radiation (OLR) fields are provided on a T62 Gauss-
ian grid and are subsequently regridded to a 2.5° × 2.5° latitude-longitude grid using a bilinear interpolation 
scheme. To compute indices of tropical variability based on SST data for NNR1, we use version 1.1 of the 
HadISST SST data set (Rayner et al., 2003), which provides monthly global SST on a 1° × 1° latitude-longi-
tude grid from 1870 to present.

The JRA-55 reanalysis (Kobayashi et al., 2015), covering the period from 1958 to present, is a more recent at-
mospheric reanalysis product that aims to take advantage of ongoing improvements in forecasting systems 
and available observations. As for the NNR1 reanalysis, a frozen analysis system is employed and atmos-
pheric and surface observations are assimilated. The assimilation system used for JRA-55 employs a TL319 
resolution operational system with 60 vertical levels. The use of a higher resolution model, together with 
other updates to the system, has been found to yield improvements in the representation of the synoptic 
scale atmospheric circulation compared to the previous generation JRA-25 reanalysis (Onogi et al., 2007), 
although there remain known issues (Harada et al., 2016). Daily mean Zg(500 hPa), u850 hPa, u250 hPa, usfc, vsfc, 
MSLP, and OLR fields are obtained on a 1.25° × 1.25° latitude-longitude grid. For SST fields, the model sur-
face brightness temperature provided on a 1.25° × 1.25° latitude-longitude grid is used. Where required by 
the definition of the index as noted below, we regrid the initial fields to a 2.5° × 2.5° latitude-longitude grid 
using a bilinear interpolation method.

3.2. Indices

From the full gridded fields, we compute a set of indices diagnosing the activity of a selection of major glob-
al climate modes, which will form the nodes in the fitted graphical models. In a fully data-driven approach, 
the definitions of such indices might be automatically determined by using community detection methods 
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Figure 2. Schematic illustration of the method used for comparing the two reanalyses: Given a set of (a) prior distributions and (b) observed data (here, 
time series of climate indices), a sample from the posterior distribution over possible structures is generated via (c) a structure Markov Chain Monte Carlo 
simulation. Subsequently, we evaluate (d) posterior distributions for the presence of individual edges and (e) the MAP estimates for the structure.

• In general, reversible jump MCMC is used to sample from the joint posterior 
distribution P(q,G|D) (Algorithm 1 Harries & O’Kane 2021).

• For models where the conditional posterior distribution for all parameters admits 
evaluation the scheme reduces to the MC3 scheme of Madigan et al. (1995) Algorithm 2 
Harries & O’Kane 2021).

Given a set of (a) prior distributions and (b) observed data (here, time series of climate indices) a sample from the posterior 
distribution over possible structures is generated via (c) a structure Markov Chain Monte Carlo simulation.

Subsequently, we evaluate (d) posterior distributions for the presence of individual edges and (e) the MAP estimates for the 
structure.

Given a sample from the model posterior distribution, by averaging over the set of possible models the posterior 
credibility of given features may instead be estimated in the Bayesian approach to identify edges that are well 
supported by the data.



DAGs versus heatmaps: Tropical JRA55
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• Structurally modular priors for the parent sets 𝑝𝑎' 𝑌"& , allows the prior for a graph G to be decomposed into independent 
priors for the parent sets 𝑝𝑎' 𝑌"&  of each of the models n indices.

• We fix a maximum lag of 𝜏*+,, such that 𝜏*+,= 6-months.

• To sparcify the network, we set the maximum parent set size for each index to 𝑝𝑎' 𝑌"& ≤ 𝑝*+, = 10.

• Hyperparameters for the priors were determined from the reanalyses and correspond to independent 𝑡- marginal priors for 
regression coefficients with 95% highest density intervals −1 ≤ 𝛽 ≤ 1.

• Hyperparameter ranges were tested ranging from weakly informative to somewhat informative were determined to give 
qualitatively similar results.  

• As the indices at t = 0 can be factored, for a given index, posterior samples were obtained by running 8 chains of length 
1×107 samples (40 cycles of 250,000). 

• Chain convergence was assessed by considering the homogeneity of the distribution of parent sets within chains using 𝜒2

and Kolmogorov-Smirnov tests (Brooks et al., 2003) for each index. 

• Wasserstein distance and Kullback-Leibler divergence used to assess model performance.

• Various choices of thinning parameter were considered to determine the number of retained samples based on convergence 
rates. Qualitatively our finding was that the evaluated graphs were relatively insensitive to thinning up to a factor of 1000. 

• Acceptance rates for RJMCMC were between 0.16-0.4

• 13 teleconnections (AO, SCAND, AR, NAO(+,-), PNA, PSA(1&2), MJO (RMM1&2), ENSO(MEI), IOD)
• 2 reanalyses (JRA55, NNR1)
• 7 CMIP5 models (HadGEM2-CC, CNRM-CN5, NorESM1-M, GFDL-ESM2, MIROC5, CanESM2, ACCESS1-0)
• Full year and boreal winter (DJF) 

• 2,340,000,000 samples in total.

Calculation details
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Thresholded ≥ 0.5

DAGs for Tropics
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• The Wasserstein distance 𝑊. 𝑃,𝑄  is the minimum amount of work required to transform one distribution 
into another.

• The Kullback-Leibler divergence 𝐷/0 𝑃||𝑄  measures the information gain when the prior Q is replaced by 
the posterior P.

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Table 1. Models are respectively ordered by their correspondence to JRA55 using the Wasser-

stein distance and Kullback-Leibler divergences. Calculations are over posterior weights for

indices related to specific regions and describing teleconnections between regions.

Models ordered by geographically determined Wasserstein distance
Region ! All (global) Tropical NH SH NH-Tropical SH-Tropical
Order # JRA55 JRA55 JRA55 JRA55 JRA55 JRA55

1 NNR1 NNR1 NNR1 NNR1 NNR1 NNR1
2 HadGEM2-CC MIROC5 MIROC5 HadGEM2-CC HadGEM2-CC HadGEM2-CC
3 CNRM-CM5 HadGEM2-C CNRM-CM5 NorESM1-M CNRM-CM5 CanESM2
4 NorESM1-M CanESM2 HadGEM2-CC ACCESS1-0 GFDL-ESM2M MIROC5
5 GFDL-ESM2M NorESM1-M GFDL-ESM2M CNRM-CM5 CanESM2 NorESM1-M
6 MIROC5 ACCESS1-0 ACCESS1-0 GFDL-ESM2M ACCESS1-0 CNRM-CM5
7 CanESM2 GFDL-ESM2M CanESM2 CanESM2 MIROC GFDL-ESM2M
8 ACCESS1-0 CNRM-CM5 NorESM1-M MIROC5 NorESM1-M ACCESS1-0

Models ordered by geographically determined Kullback-Leibler divergence
Region ! All (global) Tropical NH SH NH-Tropical SH-Tropical
Order # JRA55 JRA55 JRA55 JRA55 JRA55 JRA55

1 NNR1 NNR1 NNR1 NNR1 NNR1 NNR1
2 MIROC5 ACCESS1-0 HadGEM2-CC ACCESS1-0 MIROC5 ACCESS1-0
3 CNRM-CM5 HadGEM2-CC NorESM1-M MIROC5 CNRM-CM5 CanESM2
4 ACCESS1-0 CanESM2 ACCESS1-0 CanESM2 ACCESS1-0 HadGEM2-C
5 HadGEM2-CC MIROC5 GFDL-ESM2M CNRM-CM5 HadGEM2-CC MIROC5
6 NorESM1-M CNRM-CM5 MIROC5 HadGEM2-CC NorESM1-M CNRM-CM5
7 CanESM2 NorESM1-M CNRM-CM5 NorESM1-M CanESM2 NorESM1-M
8 GFDL-ESM2M GFDL-ESM2M CanESM2 GFDL-ESM2M HadGEM2-CC GFDL-ESM2M

SH mid-troposphere as represented by the PSA1 mode at lags 1 through to lag 3 (O’Kane569

et al., 2017) and the higher latitude westerly winds via the SAM at lags 4 through 6. While570

a subset of CMIP5 models have causal relationships indicating ENSO influence on PSA1,571

these are very much weaker than those present in the reanalyses. In contrast, none of572

the CMIP5 models capture the time lagged influence of ENSO on the SAM apart from573

ACCESS1-0 where the causal relationship is weak and at shorter lag i.e., t�(⌧ = 3, 4).574

MIROC5 and GFDL-ESM2M have the ENSO-SAM teleconnection at t� (⌧ = 1) and575

decaying thereafter. While we can readily describe these particular cases of model bi-576

ases due to their occurrence across a range of models and their ready physical interpre-577

tation, other biases represented in figure 4 are more generally model specific requiring578

detailed examination of the posterior weights across a number of DAGs specific to a par-579

ticular model to inform where biased teleconnections may be caused by, or the cause of,580

related biases.581

Further examples of what appear to be systematic biases across CMIP5 models oc-582

cur for the tropical-NH teleconnections. As an example all models, with the exception583

of CanESM2, have notable posterior weights for the ENSO (MEI) teleconnection to the584

AO extending in most cases from t � (⌧ = 1, ..., 4). This teleconnection is largely ab-585

sent in the reanalyses over lags 1 to 3, and only emerges weakly at longer lags. The ten-586

dency for the CMIP5 models considered here to over emphasise ENSO-AO teleconnec-587
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Ordering w.r.t. reference reanalysis (JRA55)



NH

Tropics

SH



Maximum a posteriori 
models (posterior 
means) increase 
sparsity.

Where an edge also 
appears in the maximum 
a posteriori (MAP) for 
the structure, the 
posterior 95% highest 
density interval (HDI) 
informs the choice of 
priors.



• Regardless of metric, JRA55 & NNR1 reanalyses are in good agreement.
• This is despite different models, resolutions, data assimilation methodologies (4D-VAR, EnKF), 

changes in observing networks and over a decade between systems becoming operational.

• For the CMIP5 models considered 
1. In the tropics – where autocorrelations are large – we see the highest degree of correspondence.

2. For tropical teleconnections to the NH there is a large subset of models that agree for specific 
causal influences.

3. For NH influences on the tropics the models show diverse highly uncertain and weak 
teleconnections.

4. Tropical SH teleconnections have generally poor correspondence to reanalysis.

5. The high latitude annular modes AO & SAM and their autocorrelations are the better simulated 
tropospheric modes, although their teleconnections are highly diverse across CMIP models.

Key findings



• The range of spatio-temporal scales inherent in the climate system makes the general problem of 
Bayesian inference challenging. 

• We have outlined a Bayesian framework for estimating time-homogeneous structural causal models 
(SCMs) based on
1. decomposing climate data using empirical indices of the climate modes of variability
2. learning a posterior distribution over possible structures, rather than selecting a single graph, to 

ascertain overall model uncertainty. 
3. identifying robust structural differences between a set of baseline estimates from observational 

products and climate models to establish model biases. 

• Given the results here (and elsewhere), major questions arise as to the utility of GCMs to reproduce 
observed teleconnection behaviours and hence to inform future changes in climate teleconnections 
(risk).  

• However, regime dependent SCMs have the potential to deepen our understanding of the future 
impacts of anthropogenic forcing on internal climate variability and associated climate risks and their 
uncertainties. 

Summary
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Assume that the data can be modelled by a regime dependent (stationary) discrete-
time structural causal model (SCM) i.e.,

xt = Ĝt(xt-1, . . . , xt-⌧ : ✓t) (14)
Ĝt = [ĝ1

t , . . . , ĝ
N
t ] (15)

Xj
t = g

j
t(pa

j
t,⌘jt) j = 1, . . . ,N (16)

where

• ⌘jt are jointly independent noise variables sampled from some stationary dis-
tribution

• pa
j
t ⇢ Xt-1,Xt-2, . . . ,Xt-⌧ define the causal parents of Xt for some lag ⌧

• and we define the persistency of the respective regimes assuming that the
data (time series) can be subdivided into a finite numer of K regimes i.e., k 2
1, . . . ,K and that the parents pa and functional dependencies are stationary
for on average M consecutive timesteps s.t. K 6 T/M.

Solving the inverse problem now requires finding the unknown parameters ✓t =
[pat,�t] for any given data segment xt 2 ReN 8t 2 [0, T ] i.e.,
✓t = [�(t), pa,�] where

• pa,� = {pa1, . . . , pak;�1, . . . ,�k}

• �(t) = [�1(t), . . . ,�k(t)]

where �(t) 2 [0, 1]k⇥T is the probability that any particular data instance x
j
t resides

in any of the k regimes.

Next steps …
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We now define the cost function as:

L(� , pa,�) =
TX

t=0

KX

k=1

�k(t) k xt - Ĝk(pak,�k) k2F (17)

with

•
f

.
f2
F is the squared distance function. This could be the Euclidean L2 norm or

alternately based on the marginal likelihood,

• �k(t) is the weight of the k regime specific network at time t

• assuming convex i.e.,
PK

t=1 �k(t) = 1 8t where �k(t) 2 [0, 1].

Persistency of regimes (temporal regularization) can be applied in the standard
way i.e.,

T=1X

t=1

[�k(t+ 1)- �k(t)] 6 C 8k 2 K. (18)

Here C u T/(MK) assumes an average regime duration of M timesteps across all
K regimes but NOT that all regimes have a constant duration within the bound of
having a maximum number of C transitions.



Thank You
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It is then necessary to construct a Markov Chain Monte Carlo (MCMC) sampler
that samples from the joint posterior P(✓,G|D) using, for example, reversible jump
MCMC (RJMCMC). Here we use the linear regression model where we assume each
X
i
t is assumed to be conditionally Gaussianly distributed i.e.

X
i
t|pa(Xi

t), ⌧
2
i ⇠ N(µi

t, ⌧-2
i ) (36a)

where

µ
i
t = �

i
0 +

piX

j=1

�
i
(kj,⌧j)

X
kj
t-⌧j

(36b)

with mean µ
i
t = E[Xi

t|pa(Xi
t)] given by a linear function of the parent variables

pa(Xi
t) = {X

kj
t-⌧j

|j = 1, . . . ,pi}. The local marginal likelihoods  (D|G) and poste-
rior distributions for the parameters of a given graph can be analytically evaluated
provided that conjugate normal-gamma priors are assumed for the conditional pre-
cision ⌧2i and coefficients �i

(kj,⌧j)
where

⌧
2
i ⇠ Gamma(a⌧,b⌧) (37)

�
i
(kj,⌧j)

|⌧2i , pa(Xi
t) ⇠ N(0,

⌫
2
i

⌧2i

), j = 1, . . . ,pi (38)

and a⌧, b⌧, and ⌫2i are prior hyperparameters.
Using the underlying generative model, Eqns 36, posterior estimates for both the

structural features and model parameters can be obtained within a single sampling
scheme. Appropriate choices for the hyperparameters a⌧, b⌧, and ⌫2 allow varying
levels of regularization to be imposed so as to yield more reliable, if more conserva-
tive, estimates given relatively short and noisy timeseries.

4 Prior distributions


